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Proton SEU Cross Sections Derived from Heavy-lon
Test Data

Larry D. Edmonds

Abstract—Many papers have presented models for estimating yet tested with protons. A proton test is an additional expense,
proton single event upset (SEU) cross sections from heavy-ion testso there is a motivation to derive models that predict proton
data, but all rigorous treatments to date are based on the sensi- cross sections from heavy-ion test data. This is the subject of
tive volume (SV) model for charge collection. Computer simula- A .
tions have already shown that, excluding devices utilizing phys- the presen_t paper. The_ analysis is mtepded fgr acertain C.Iass of
ical boundaries for isolation, there is no well-defined SV. A more SEE in which the physical postulates in Section Il are believed
versatile description of charge collection, which includes the SV to be adequate approximations. Single event upset (SEU) is the
model as a special case, utilizes a charge-collection efficiency func-prototype assumed in most of the discussions, but the analysis is
tion that measures the effect that the location of ionization has expected to also apply to single event latchup (SEL). The results

on collected charge. This paper presents the first rigorous anal- . L . ) . Lo
ysis that uses a generic charge-collection efficiency function to re- derived here are limited to those cases in which direct ionization

late proton to heavy-ion cross sections. The most practical result from protons is not important, so the proton cross section is en-
is an upper bound for proton SEU or single event latchup (SEL) tirely due to reaction products created by the protons.

cross sections, which requires no information about the charge-col-  Many papers have derived relationships between proton and
lection efficiency function, except that it exists. In addition, some heavy-ion SEU susceptibility (a good overview of some of the

models previously presented by others are reproduced (or, in one ] .
case, extended) by applying the general theory to special cases. TheWOrk done prior to 1996 was given by Petersen [1]). However,

similarities and differences between a variety of models become all rigorous treatments (i.e., the physical postulates are precisely
clear when the models are recognized to be special cases or varia-stated, and rigorous analysis is applied to the postulates, e.g., in

tions of this general theory. [2]) to date use the sensitive volume (SV) model as the phys-
Index Terms—Charge-collection depth, charge-collection effi- ical postulate. This model states that the portion of the charge
ciency, effective flux, proton SEU cross section, SEU, single eventliberated by an ionizing particle that contributes to SEU is the
upset. charge liberated within some definite volume within the device.
Charge liberated outside the volume is assumed to make no con-
I. INTRODUCTION tribqtion. H(_)V\_/ever, computer simu!ations _show_that, exclqding
) . ) devices utilizing physical boundaries for isolation, there is no
M ANY semiconductor devices flown in space are exposegch volume. Instead, charge collected at a device node changes
to both heavy ions from galactic cosmic rays (in addisontinuously as the source of ionization (e.g., an ion track) is
tion to other possible sources) and a large proton flux from solgioyed. A more realistic description of charge collection recog-
events and/or a planetary radiation belt. Regarding single evaes that charge liberated at any location (within limits estab-
effects (SEE), the most important types of reactions inducedjighed by physical boundaries) makes some contribution to col-
a device can be different for the two particle types (direct iofscted charge, but the amount depends on the source location.
ization from heavy ions versus the creation of reaction produtﬁpphysicm postulate that is more versatile than the SV model
by protons via nuclear reactions, with the reaction products prgyt includes the SV model as a special case) is that there is a
ducing the ionization). Therefore, the most reliable SEE rate C@harge-collection efficiency function (a function of the spatial
culations utilize experimentally measured device proton croggordinates within a device) that measures the effect of source
sections for proton SEE rates, and utilize experimentally megzation on collected charge. The analysis given here is the first
sured heavy-ion cross sections for heavy-ion SEE rates. The Hggous analysis that explicitly includes a charge-collection ef-
of proton data to estimate heavy-ion rates is not widely accepigdency function to derive a correlation between heavy-ion and
by the community at present, so many investigators consigghion SEU or SEL cross sections. A charge-collection effi-
heavy-ion tests to be essential for devices that will be exposgdncy function was theoretically calculated for the special case
to heavy ions. Therefore, a very common situation in practicedg otal (integrated in time from zero to infinity) charge collec-
that in which a device has been tested with heavy ions but Rgjp by diffusion [3], but the present paper considers a more
generic function, which is any function that adequately satis-
fies the first postulate in the next section.
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future work finds ways to obtain the required information, buunction. For the special case of the SV modelequals 1 in-
another motivation for presenting them is academic curiosity.dide the SV and zero outside. Note that if the relevant physical
is interesting to see the similarities and differences between vguantity is charge collected over a finite time period associated
ious cases. It is also interesting to compare these conclusionsithh some device time constant, thén is the critical value of
results previously derived by other investigators. charge collected over this time period, afads the weighting

In spite of limitations of the SV model, nearly all of the nufunction for this quantity. The first postulate is quite general.
merous published papers that predict proton cross sections fiear example@. could be a time integral of the product of some
heavy-ion data report good agreement between measured praiament (possibly at a device contact, but not necessarily), multi-
cross sections and model predictions. However, previous pdied by some coefficient that favors current at early times more
sults generally contain adjustable parameters selected for a gtiah current at later times (with “early” and “late” defined by
track record, in the sense of producing agreement for the ns@me device time constant). Whatever the physical quantity is
jority of the cases in which comparisons were made betwethrat . represents{ is the weighting function for that quan-
measurement and predictions. Even after a good track recordtiigs The upper bound estimate given in Section Ill does not re-
been established, there is still some uncertainty as to whethepére that we even know what kind of physical quantity (e.g.,
new case of interest will conform to the same pattern. This ucharge collected at a device contact, or something else§that
certainty is a risk to a flight project that is relying on modeand2 refer to. The only requirement is that some constant
predictions for a particular device that has not been tested withd some corresponding functiénsatisfying (1)exist(we do
protons. The upper bound presented in Section Ill contains not have to know what they are). Because of this generality, the
arbitrary or adjustable parameters, hence there is no artificikory is expected to apply to SEL as well as to SEU. However,
way to obtain a good track record. A disadvantage is that theorder to use familiar terminology, the prototype assumed for
upper bound can sometimes be excessively conservative, paost discussions is SEU. We will céll. the critical charge, and
ticularly for devices that are completely immune to protonsve will call € the charge-collection efficiency function.
The only required input information is heavy-ion test data (from A property of the first postulate that may appear to be a se-
long-range, normal-incident ions), which is not enough inforere limitation is that it suggests a certain kind of linearity which
mation to determine proton cross sections, so the upper bouritl be called the “additive property.” For conceptual clarity, as-
is a more accurate proton cross section estimate for some sieme that the relevant physical quantity is collected charge at
vices than for others. The upper bound is the proton cross sectsmme device contact. The additive property is defined to mean
for the worst possible device (i.e., having the greatest possilihat the collected charge from anion track is the sum of contribu-
proton susceptibility) consistent with the heavy-ion test dattions from track sections (with the track partitioned into sections
However, it will be seen in Section VI that this “worst” devicen any arbitrary way), with the contribution from each section
is not always a rare or hypothetical case. It is fairly common faalculated with only that section present (all other sections are
real devices that are susceptible to protons to be nearly this banoved from the device). This is a sufficient condition for the
in the sense that the proton cross sections are within a factofioft postulate to apply, but fortunately it is not a necessary con-

three of this upper bound. dition (as argued later). This is fortunate because the additive
property is frequently violated. An example of a violation, in
Il. PHYSICAL POSTULATES which a track can be less than the sum of its parts, is provided
by a DRAM hit by an “overkill” heavy ion (the LET is much
A. The First Postulate larger than needed to cause an SEU for the ion hit location).

The first physical postulate assumes that for each peintA DRAM storage capacitor can only collect a finite amount of
in a device, there is a weighting functid®(z) which mea- charge before an associated p—n junction becomes forward bi-
sures the relative importance of an increment of charge (e.@sed and charge collection stops. A small track section, taken
a piece of an ion track) liberated at the paintcompared to by itself with all other sections removed from the device, will
the same amount of charge liberated at other locations. To & see this effect, while an entire overkill track will. The charge
more specific, suppose two points in the devigeandz, sat- collected from the entire track will be less than the sum of con-
isfy Q(x;) = 2Q(x2). Then a given amount of charge liberatedributions when each contribution is from one section without
near the poing; will produce the same device response as twidge others present in the device.
this charge liberated near the paint The precise and complete An example in which a track is greater than the sum of its
statement of the first postulate is that there exists a funétionparts is charge collection under high-carrier-density condi-
and a constar), (a property of the device) such that tions. Funneling (enhanced voltage drops across quasi-neutral
regions) is a response to, and an indicator of, such conditions
(but it is a more dramatic indicator for-p junctions than for
pT—n junctions) [4], [5]. A small track section taken by itself
may not induce such conditions while the entire track does.
wherep is the excess charge density (charge per unit volume)Fortunately, two properties taken together help the first pos-
liberated by a particle hit, and the volume integral integratéslate to remain valid in spite of violations of the additive prop-
over the entire device. For SEU, the relevant physical quantiyty. The first property, which will be called the “JBA property”
is charge collected at a device node. In this cékeis the crit- states that the physical interactions relevant to SEU cross sec-
ical charge and can be called a charge-collection efficiencyions are those interactions applicable to particle hits that are just

SEE occurs if and only if / p(DQUD) Pz > Q. (1)
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barely able (JBA) to cause an upset. The relevant interactioradid, the first postulate still approximates reality at least as well
for a given ion are those applicable to ion hits at the perimetas the SV model.
of the cross section for that ion. If we assume (right or wrong)
that the same physics applies to hits at otherllocations, the 8S"The Second Postulate
sumed physics may or may not correctly describe charge collec-
tion from those other hit locations, but will still correctly predict  The second postulate is probably the weakest part of the anal-
the SEU cross section. In particular, physical interactions prgsis, and future work may find ways to improve upon this. This
duced by overkill hits are not always relevant (e.g., the abope@stulate is presently needed to simplify the analysis. This pos-
DRAM example). The second property, which will be called thisllate assumes that reaction products created by protons have
“Q-flexibility property” states that the physical quantity (call itshort enough ranges so tHatcan be approximated as a con-
Q) that2 refers to need not be the actual collected charge for &fant over the reaction product trajectory.
ion hits, as long as it equals (or is any strictly increasing function The second postulate has one tendency to produce conserva-
of, for still more generality) the actual collected charge for JBAve proton cross section estimates. The worst possible proton re-
hits. If there exists a physical quanti€y having this property action allowed by the second postulate is that in which all charge
and also having the additive property (we do not have to kndiberated by the reaction products is liberated at a point where
what( is, as long as it exists), the first postulate is valid. is maximum, i.e., all liberated charge is collected with the max-
For illustration, consider a device (hypothetical if not realimum efficiency. In reality, if2 varies considerably over a reac-
in which a particular approximation explained below applies tion product trajectory, then contributions to the liberated charge
charge collection under high-density conditions. This approftom different source locations cannot all be collected with the
imation ignores nonlinearities (produced by depletion regionaximum efficiency. Unfortunately, there is another tendency
boundary motion as a collapsed depletion region expandsteounderestimate proton cross sections. The explanation is sim-
its original size [4], [5]) when comparing different high-denplest for the SV model, so we assume that this model applies
sity conditions, but there is still a nonlinearity associated wittor the purpose of illustration. The second postulate does not
the transition between low- and high-density conditions. Feecognize reactions outside the SV that send reaction products
low-density conditions, the current collected at a reverse-biagetb the SV. In reality this can occur, so the actual proton SEU
depletion region is the minority-carrier diffusion current caleross section can include some events in which reactions occur
culated from the minority-carrier diffusion equation. For sufeutside the SV, while the calculated cross section excludes such
ficiently global high-density conditions, the approximation isvents.
that the current is twice the minority-carrier diffusion current The second postulate is a crude approximation for a real de-
calculated from the ambipolar diffusion equation [4], [5] (invice, but it may not be as bad as the SV model would indicate.
cidentally, funneling in this approximation is a response to the discuss this, we first discuss two types of depths in a de-
current rather than a cause of current in the sense that the yice. The most familiar of the two depths is tblearge-collec-
tential distribution becomes what is needed to produce the dtifin depth, defined to be collected charge from a long- (effec-
currents needed to make the total current be as stated [4], [Hl)ely infinite) range normal-incident ion, divided by the charge
The actual collected charge does not have the additive prger unit length liberated along the ion track. The charge-col-
erty if the entire ion track creates sufficiently global high-derection depth defined this way is a variable, i.e., a function of
sity conditions while a small track section alone would not. ghe lateral coordinates describing the ion hit location. This was
way around this problem is to €@ be twice the charge from noted by Petersen [6] and later by Baretkal. [7] when dis-
the minority-carrier diffusion current calculated from the ameussing the cross section associated with the charge-collection
bipolar diffusion equation. This does have the additive propertyepth exceeding a specified value. Petersen has also used other
so there is afi? corresponding t@). If it is also true (a big “if,” terminology, a charge-collection gain [8], following Massengill
but assume this for illustration) that all JBA hits produce su&t alwho reported that some devices exhibit a parasitic bipolar
ficiently global high-density conditions, thep equals the ac- gain that varies as ion hit location is varied [9]. The first phys-
tual collected charge for JBA hits, $p has a critical value and ical postulate stated in the previous subsection implies that the
the first physical postulate is valid. The existence ofhamat- charge-collection depth at a given lateral location is the integral
isfying (1) was demonstrated for this hypothetical example lof €2 along a perpendicular line through the device at that lat-
constructing it. Even if we did not know how to construct it, theral location. To simplify this discussion, we are assuming that
first physical postulate would still apply (although we may notve do not have to utilize th@-flexibility property, sof2 refers
know it) because the only requirement is that suclflaexists to actual collected charge (otherwise we would have to refer to
(we do not have to know what it is). @ instead of collected charge). Another depth,¢batributing
Because the above illustration contains some simplifying agepth, is the depth at whidhis small enough to be neglected at
sumptions, it does not provide a convincing argument that thesater depths. It is only for the SV model that the charge-col-
first physical postulate is always valid (it probably isn't). Théection depth and contributing depth are equal. More generally
intention of this example is merely to argue that the postulaassuming tha® does not exceed 1 anywhere in the device), the
has broader applicability than we would expect if we did natontributing depth is larger than the charge-collection depth.
consider the JBA property and tiagflexibility property. Also, The second physical postulate requires that reaction product
the first postulate is more versatile than the SV model, whitanges (at least for those reaction products that are most im-
including this model as a special case. Therefore, even whenportant to the device proton cross section) be less than the con-
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tributing depth, but this can be more lenient than requiring tled using (3) produces the upper bound
ranges to be less than the charge-collection depth. For a hy- oo
pothetical illustration, suppose that at some lateral location we op(E) < @ / 1 M
have{) = 0.1 within a 10 m depth, and? = 0 below this a Jo L dL
depth. The charge-collection depth at this lateral location is only
1 um, but the contributing depth is 1@n, and the second pos-
tulate provides a fairly good approximation when the reaction
product ranges are only a few microns. This hypothetical ex- 10 calculate 3 from (4), we need to evaluate«. The
ample is probably not very typical, so it does not furnish a cofir(E, ) used here is the same as the BERE,) function
vincing argument that the second postulate is a good approted by Normand ({10, Fig. 1]), but with a unit conversion
mation. The approximation may still be crude, and improvingPplied so thaba(E, Q) is expressed as a function of liberated
upon this might be a worthwhile objective. The intention of thigharge? instead of the energy:,. deposited by the reaction
example is merely to argue that the approximation might bePgoducts. Note that these data apply to neutrons, which is
little better than the SV model would suggest. a good approximation for protons only at the larger values
of £ (>100 MeV). This should be adequate for practical
ll. AN UPPERBOUND FORPROTON SEU CROSSSECTIONS applications, because the proton saturation cross section (i.e.,
large £ cross section) is the most important parameter for
Itis easy to show that the postulates in Section Il imply th@foton-induced SEU rates in typical space environments. This
the SEU proton cross sectiop, (£), for protons having energy js because a typical proton environment shielded by typical

dL. (5)

IV. EVALUATION OF 3

E, can be expressed as spacecraft shielding is such that most protons having energies
large enough to create SEUSs, also have energies large enough
opr(E) :n/ @ <E, Q?‘i)) APz (2) for the cross section to be roughly equal to the saturation
X

cross section. Therefore, the shape of the(£) versust
curve at smallZ is only of secondary importance for SEU rate

wheren is the density of targets (number of silicon atoms pef . : o
" y gets ( P calculations. Also, Baralet al. provided an efficiency factor

unit volume) andv(E, Q) is the per target cross section for e : :
proton having energy¥ to produce a reaction that liberates %at can be_ used for reflr_ung SEU rate estimates derived from
e saturation cross section ([11, Table I]).

charge exceedin@. Note that the integrand in (2) is zero at any . . r
location wherd? = 0, so the volume integral in (2) can be taken Afairly good fit to the data whet > 50 MeV has the form

to be over the entire device (in fact, it can be over all space). It no(E, Q) = A(E)C—B(E)Q (6)
is shown in the appendix that the first postulate implies that the ’
cross sectiow,,;(L), for long-range heavy ions having LET,  which gives

satisfies A(E)
1 doy(L pE) =
/ - "&L( )ar = Qi / QF) dx ®) B(E)e
0 ‘ whereA, B, andg are given in Table I.
where All numerical results given later in this paper apply to 200
coul MeV. Readers interested in lower energies (which are partic-
a=1.04x 10*10C_m[|v|ev-cm2/mg]*1 ularly important when neutrons are a concern) should keep in

touch with ongoing research in order to use the most up-to-date
is a unit conversion factor for converting LET into liberatedic- There has already been a recent refinement for incident en-

charge per unit length along the ion track. ergies up to 150 MeV (for both neutrons and protons) [12] not
Now define3(E) by included in Table I. The equations derived in this paper are suf-
ficiently generic so that readers can use#heof their choice.
B(E) = max[Qna(FE, Q)] 4)
Q V. NUMERICAL ALGORITHMS
Note that (4) implies The upper bound proton cross section is given by (5). There
are several ways to evaluate the integral in (5). One way is
Qna(E, Q) < B(E) a numerical integration. Another way applies to those cases
(which are common but not universal) in which the heavy-ion
or cross section can be adequately fit by an analytic function
having a known integral. A third method is also a numerical
B(E) ) ) L= i
na(E, Q) < —— integration, but it utilizes an existing computer code that
Q calculates heavy-ion SEU rates in a user-supplied environment.
so (2) gives The second two methods are discussed separately in the first

two subsections. Other considerations, regarding the amount
3(E and type of data to be used, are discussed in the last two
o(B) < ) / OF) dPa P

subsections.



EDMONDS: PROTON SEU SECTIONS DERIVED FROM HEAVY-ION TEST DATA 1717

TABLE | 10—
FITTING PARAMETERS A AND B FOR na, E
AND THE IMPLIED /3 1072 L - o ]
o :
E (MeV) A(E) (1/cm) B(E) (1/pC) B(E) (coul-um’/cm’) £ i HM65162 (1985)
50 0.030 23.099 4.78x10°° < 107 L / LATCHUP .
100 0.022 14.433 5.61x107° c E - E
200 0.020 9.935 7.41x10°° S,
o 10 E E
®
. . . . (5] -5
A. Evaluation via an Exponential Fit @ 107 F 3
. . (]
A simple function that frequently (not always) produces a o 10°L o ]
good fit to heavy-ion SEU or SEL cross section data is given 2
Jol
by o 40 7L i
Ll/e -8 i | I 1
oniL) = o0 exp <_ L () g 10 20 30

LET (MeV—cmz/mg)
where o (a constant) is the saturation cross section, and
Ly,. (a constant) is the LET value at which the cross sectidiy. 1. Heavy-ion SEL cross section for the HM65162 SRAM produced in
is 1/e times the saturation cross section. Although (7) was®> ()Dﬁ%(po'”ts) are from Levinset al. [14]. The curve is from (7) using
. . . . o = 0.116 cn?, Ly,. = 28.3 MeV-cn¥/mg.

derived from physical analysis [13], it does not apply to all
cases. One reason (perhaps not the only reason) is that a sum , ) ,
of functions of the type given by (7) is not another functiOHaWpQ d|ﬁerent$EL cross secyons). Measurgd heavy-ion cross
of the same type, unlesk, ., is the same for all terms in sectlon'datg (points), qu a fit (curve) obtained from (7) are
the sum. Therefore (7) does not apply to devices containi§g@Wn in Fig. 1. The fitting parameters &g = 0.116 cne,
dissimilar components that contribute to the cross sectidiit/e = 283 MeV-crnz/_mg. It is not known which, if any, of
However, (7) is worth considering, because it frequently dothe points might cont_am cosine-law errors (i.e., were measgred
apply, and a test for determining whether it does apply at angles)_, so the fit attemp;ed to accommodate all pom;s.
very simple. The test plots the cross section agalrigt on Tr_\e seemllngly low cross section at.thel largest LET data point
semi-logarithmic paper (the cross section uses the logarithrfiight be influenced by a recombination loss discussed by
scale), and (subject to qualifications in the next paragraph§vinsonet al. [14], so this point was given a low priority
we look for a straight line. when sele_ctlng the fit. If this po_|nt is meanln_gful, then the

Two considerations are relevant when testing the applicabilify Overestimates the cross section, but this is okay for an
of (7). The first involves cosine-law errors. Heavy-ion testdPPer bound estimate of,.. Note that the calculated cross
typically change the tilt angle of the device relative to the ioR€ction is negligible for LET below that of the lowest LET
beam to mimic a change in ion LET, and the data are th&RiNt, even though (7) has no threshold LET. _
converted via an assumed cosine law. The converted dat&©" those devices such the (7) provides an adequate approxi-
are intended to represent the device susceptibility at nornf@tion, the integral in (5) can be evaluated, and the result is
incidence. However, the cosine-law conversion is only an
approximation, and not always a good approximation. Agpr( E) BE) oo
unfortunate property of the popular Weibull function is that a Ly
it fits a certain class of cosine-law errors (those giving the (8)
illusion of a fast approach to saturation) very well. This is i . _
unfortunate because cosine-law errors are not always noti@dEVvaluation via a Heavy-lon Rate Calculation
(incidentally, Petersen suggests that a log normal distributionThis method performs a numerical integration by using an
might be better than the Weibull fit [8]). The fit given byexisting computer code that calculates heavy-ion SEU rates in
(7) generally does not fit cosine-law errors, so prefereneeuser-supplied environment. The physics assumed by the code
should be given to data measured at normal incidence whanst be consistent with the first postulate in Section Il, but this
determining whether the fit applies. includes the SV model, which is used in the standard codes.

The second consideration is that (7) has no threshold LET (thkis is a convenient method for individuals accustomed to cal-
LET at which the cross section is zero). This is not a conceculating heavy-ion SEU rates, because no programming is re-
as long as the cross section calculated from (7) is negligibdyired, and routine calculations can be used.
small at LET less than the experimentally measured thresholdViost of the discussion below justifies the conclusion at the
LET. The straight line previously discussed often fails to fit thend. Readers willing to believe the conclusion without seeing
smallest LET (largest 1/LET) data, but this is usually not atme justifications can skip to the last paragraph in this subsection,
important concern. which describes the algorithm.

An example is provided by data obtained by Levinsin  To derive the algorithm, note that (3) applies not only to cross
al. [14] for the HM65162 SRAM produced in 1985 (the yeasections measured at normal incidence, but also to cross sections
is relevant because there are different versions of the devioeasured at any angledf,; is interpreted as the directional

IA

(equivalent to (5) when (7) applies).
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cross section. Therefore same rate will be calculated for all choices of the RPP thickness
(exceptfor numerical errors, e.g., associated with data interpola-
[ / = 1do(l) o tion/extrapolation and/or approximations for chord-length dis-
o L dL normal incidence tribution functions).
B 1 dop (L) dL Any computer code consistent with the first postulate in Sec-
- [/0 L dL Lny angle. tion Il should calculate the same value for. Note, however,

that the conventional model used for smooth device cross sec-

The solid angle integral of the above equation producestign curves is the integral RPP (IRPP) model, which regards a
heavy-ion SEU rate in an isotropic environment (with théevice as a collection of RPPs, that may have different critical

integral LET flux proportional tal /L) on the right side. The charges (at least this is the original statement of the RPP model
result is [15]). This model does not satisfy the first postulate in Section

I, because different values @J. are associated with different
1 /°° 1 doyi(L) JL — +* |dav-cr? cm? ©) RPPs. However, each RPP satisfies the postulate, so (5), (9), and
o L dL =7 y coul-um? (10) apply to the individual RPPs. Summing these results over
the RPPs produces the same results (5), (9), and (10) but with the
wherer* is defined by cross sections interpreted as device cross sections. We can there-
r+ = Heavy-ion rate for a device having a normal-infore use these results together with the traditional IRPP method
cident cross sections,; and produced by an for calculatingr* (the RPP thickness is arbitrary because the

integral LET flux H* given by H*(L) = samer®is calculated for any thickness).
(0.8856/m2-sec-stey(MeV-cn? /mg) /L. Most existing computer codes that can be used to calculate

The constant in the flus* was selected so that inconvenient” accept the environment in the form of a table of heavy-ion
constants do not appear in (9). The flé& will be called the flux versus LET. If the code allows the user to select the LET

hypotheticall /Z flux. Substituting (9) into (5) gives values appearing in the table, we must consider both numerical
errors from coarseness of the tabulation, and whether the code

H(E) < BH#(E)* wvalent to (5 10 will have to extrapolate outside the range of the table (keeping

opr#t(E) < S#(E)# (cquivalent to (5)) (10) in mind that thin RPPs require the flux to be evaluated at LETs
uch less than the threshold LET). Based on these considera-

where the quantities in (10) are the dimensionless numbers {Pe- .
I0ns, a suggested tabulation is

a

fined by
. 0.8856
Li# =100/2=3)  pgra —
O #E) =0, (E) fon? # LR
B#(E) = B(E)/[coul-um? /cm’] fori=0,1,---,175 (11a)
rigt =" /[1/day]. where
In other wordsg .. #(E) is the numerical part of ,..( £) when L;# = L;/[MeV-cm? /mg]
expressed in the units of émAnalogous statements apply to Hi# = H?/[1/m?-sec-stel

the other quantities.

Note thatr* would not be well defined if the flux was otherIf the computer code accepts the environment in the form of a
than the hypothetical/ L flux, because a normal-incident crosslifferential (in LET) flux h* instead of an integral flu¥?*, a
section would not otherwise uniquely determine the heavy-i@uggested tabulation is
SEU rate. Different devices can have the same normal-incident

data but different directional cross sections at other angles. This Li# =100/29=3)  prar — 0'88‘)26
difference will produce different SEU rates in most heavy-ion ) Li#
fori=0,1,..-,175 (11b)

environments. However, (9) implies that, for this special and hy-
pothetical heavy-ion environment, different devices having th
same normal-incident data also have the same heavy-ion S
rate, even though they may have different directional cross sec-  p* % = p* /[(1/m?-sec-ste}/(MeV-cn? /mg)].

tions at other angles.

Readers that would like to see a demonstration of the aboverhe numerical algorithm for calculating an upper bound for
assertion can do so by using a standard computer code that t&-proton cross section via the rate calculation method is sum-
culates the heavy-ion SEU rate for the traditional rectangulararized as follows. A standard computer code designed to cal-
parallelepiped (RPP) shaped SV. All RPPs being compared atgate heavy-ion SEU rates in a user supplied isotropic environ-
given the same upper surface areas and threshold LETSs, so thant is used. The environment given to the code is either the
they have the same normal-incident cross section curve, but tiggral flux H* or the differential fluxh* (as dictated by the
are given different thicknesses (with correspondingly differesbmputer code), which can be tabulated as indicated in (11a)
critical charges so that the threshold LETs are the same). In mastl (11b). The code is also given the device heavy-ion cross
environments, the calculated rate for each RPP will depend section data, and the code calculates the heavy-ion SEW*rate
the RPP thickness. However, for the hypothetical flux, the If the code uses the IRPP method, the RPP thickness is arbitrary
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(the same* will be calculated from any thickness) as long as Tt ARARRERRARELRERE R 5
the thickness is not extreme enough to create large numerical er- :
rors. The upper bound estimate is then obtained from (10), with
(3 obtained from Table I.

AMD K-5
LATCHUP

C. The Relevant LET Range

A property of the integral in (5) that may seem unfortunate
is that significant contributions to the integral can come from

Device Cross Section (cm?)

10 E E

the high-LET portion of thery,; curve; from LETs larger than 3
we might expect to be relevant to proton cross sections. Three 1078 L 3
reasons for this are: : ® measured ]
1) A conservative property of the second physical postu- 107 3 ® estimated 3
late (Section II) tends to exaggerate the importance of the s i ]
high-LET portion of thes;,; curve. 1O e 50 20 50 80

0 10 20 30 40 50 60
2) Intentional conservatism that makes the estimate fpr

an upper bound can sometimes exaggerate the importance
of the high-LET portion of ther;,; curve. Fig. 2. Heavy-ion SEL cross sections for the AMD K-5 microprocessor. Data
3) Some contribution to,, from the higher-LET portions (points) are from internal memos, but the two highest points are very crude
of the o,; curve is real. This was pointed out be Peterseitimates: The curve is a hand sketch.
[16]. Furthermore, the experimentally measusgd can . . . . .
sometimes be under-estimated by not integrating to |ar§seometlmes al_so proton_s), i.e., one particle hit upsets several bits
enough LET, again indicating that some contribution t r c_ells. The first physical postulate can explan_ﬂ MBUs more
o fromthe higher-LET portions of they,; curve is real. easily than_ the SV quel. An attempt to explain MBU from
normal-incident heavy ions via the SV model assumes that SVs
"or different cells overlap. But this implies that several cells each
. . "Eollect all of the charge liberated in the overlapping region, so
the_ upper bound estimate foy, ca_nnot be_ cor_15|dered to be is attempted explanation is unrealistic. In contrast, the first
reliable upper bound unless the integration includes all LE Sstulate easily explains MBU in terms of charge sharing by
that significantly contribute to the integral in (5). This gene different cells. Each cell has its owhfunction, and these func-

ally Tegn;:ptgg:atmg ttcr)] near satur?tlrpt %‘;ﬁmf cu[xe. O,?ﬁ tions can overlap, but with eaéhsmall enough so that the sum
way to do this IS to use the exponential it iot; ogether with - ¢ 1,0 05 gt any given location does not exceed 1. Some frac-

(8), which mcl_udes all contrll_)utlon_s from the comple_te CUNV&ion of the liberated charge is collected by one cell, and another
Another way 15 to use a Weibull fit fos,; together with the fraction is collected by another cell. Charge collected by a given
rate ca_lculat|0n method. A good computer c_ogie that CaICUIa@eﬁI is well defined in this model for any heavy-ion hit location,
heavy-ion rates from Weibull parameters will include all releéven if the ion hits another cell. This makes an individual cell
vantLETs. . . L cross section for a given heavy ion well defined, in terms of the
A problem is most likely when no fit is used and Man,it locations that will upset that cell. Individual cell cross sec-

p0|r_1ts_ are re?d directly from the’fi plot. This IS tedlous_, tions increase with increasing ion LET, and can sometimes be-
so it is tempting to exclude the higher-LET points. Device

having threshold LETs greater than 12 Meviimg are Come large enough to overlap. Hits to overlap regions produce
often assumed to be immune to protons, so it is tempting
to ignore the portion of ther,; curve havingL > 12. An

example in which this is inadequate is furnished by the AM
K-5 microprocessor. Heavy-ion SEL data (from internal JP

LET (MeV—cmz/mg)

It is not always clear how much of the high-LET contributio
to o,,- is an exaggeration and how much of it is real. Therefo

Several types of device cross sections can be defined. One
pe, called the U-type here (U for upset), is calculated from
e total number of upsets observed during an SEU test, while

L . . nother type, called the G-type here (G for group), counts the
memos) are plotted in Fig. 2. The two highest points are Ve imber of occurrences of upset groups. An upset group is de-

crude estimates, because _the SEL rate was large gnouglﬁr{gd here to be the set of upsets (one or more) produced by the
overwhelm the instrumentation at these points. The points wer

) ) i i Ved&me particle hit. For example, if one particle hit upsets four
not fit, so the curve in the flg_ure is a hand sketch. If the portig IIs, the U-type cross section counts this as four upsets, while
of lthel ctu r(\j/? havnlgcj; f> é2_'s2'gg c'\)/:es/, _the lljpﬁr b‘fg[‘g f?ﬁ%" the G-type counts this as one group. The G-type is useful when
calculated from (10) foks = —9 evisonlyl.. x M- one upset group is regarded as one device failure, regardless of
The measured value 6 x 10~2 cnm?, so the intended upper

. ) whether the group contains one or many cell upsets. There are
bound actually underestimated the cross section. Howeve;ﬁ‘% group y b

. O alSo variations of the G-type, e.g., the G3-type, which counts
the entire plotted range of th?;:urve is included, the calculal number of occurrences of groups containing three upsets.
upper bound becomds9 x 108 cn?.

The G-type device cross section is the sum iof the Gu-type
cross sections, while the U-type is the suminf » times the
D. MBUs Gn-type.

Devices soft enough to be susceptible to protons are ofterOnly the U-type device cross section has the property of being
also susceptible to multiple-bit-upsets (MBUs) from heavy iorthe sum of the bit or cell cross sections. The U-type device cross
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section can be larger than the area of the entire device, becaustalways) smaller for the SEL case. Therefore the upper bound
cell cross sections can overlap to the extent that the sum of thesémate will often be excessively conservative for SEL (e.g., the
cross sections is larger than the device area. If all cells in the ##v165162). However, the K-5 shows that there are also cases in
vice are identical, the cell (or bit) cross section is the U-type desich the upper bound is only moderately conservative.
vice cross section divided by the number of cells in the device.Two devices were omitted from the second block in Table II.
In contrast, while a G-type device cross section can be num@ne is the AMD version of the 93L422. The upper bound esti-
ically divided by the number of bits and reported as a per-bitate for this device under-estimated the reported proton cross
cross section, it is physically meaningless to associate this witction by a factor of six, and this motivated a search for the orig-
an individual cell. inal data. This search revealed that the Weibull fit in [18] under-
The upper bound given by (5) was actually derived for agstimates the heavy-ion cross section data [19] by a consistent
individual cell rather than an entire device. The bound can Kearious LET) factor of either about two or three, depending on
applied to devices by summing over cells. If we apply (5) to easbhich of the two tested devices is selected for comparison. It
cell and sum over cells, we obtain the same result (5), except tiuts also found that scatter in the proton data [20] spans a factor
the cross sections are now sums of cell cross sections. Thekéve, with the most pessimistic data point appearing in the
sums are U-type device cross sections. Therefore, the U-tygabsequent literature (internal JPL memos commented on large
o1,; can be used in (5) to obtain an upper bound estimate foart-to-part variations, and problems with proton-beam control
the U-typeo,,.. It is plausible that the G-type;,; can be used and dosimetry). While these data are adequate for SEU rate esti-
for the G-typeo,,.. The arguments used here neither suppamates, the precision is inadequate for testing or refining theoret-
nor contradict this assertion. Investigating the validity of thiical models. Incidentally, this search also revealed considerable
assertion might be a subject for future work. The conclusion thgart-to-part variations in the Fairchild version of the 93L422 (in-
is supported here is that U-types are used to estimate U-typdsrnal JPL memos), so the slight under-estimation in Table I for
DRAMs are especially prone to MBU, and they are also esp#ts device is not too alarming. The other omitted device is the
cially prone to cosine-law errors. The U-type device heavy-idtil64. The upper bound estimate for this device under-estimated
cross sections (and therefore the cell cross sections) for DRAWMe reported proton cross section by a factor of almost two, and
are sometimes better described as isotropic than by the cogfie motivated another search for the original data. It was found
law (the G-type may have some other angular dependence, that several types of heavy-ion cross sections were measured
this is not related in a simple way to the cell cross sectiorff], but the type appearing in the subsequent literature is the
Therefore, data intended to represent the heavy-ion susceftype discussed in Section V-D. The U-type is about twice the
bility of a DRAM at normal incidence should be measured #%-type. Use of the G-type may or may not be valid, but it was
normal incidence, as opposed to using an assumed cosine-#d%® found that the proton cross section reported in [18] was
conversion with data measured at angles. more than twice the value reported in [2].

VII. EQUALITIES FOR SEVERAL SPECIAL CASES
VI. COMPARISONS WITHMEASURED DATA

This section derives equalities (instead of inequalities or

Calveletal.[17] and Petersen [18] each compiled a list of desgunds) for several special cases. The results have limited
vices tested for SEU using both heavy-ions and protons. Weibgihctical applications because they are only useful for SEU
parameters for the heavy-ion cross sections were provided §rSg| rate calculations if we have information that is rarely
each device, so an upper bound estimateforis easily calcu- ayajlable. Future work may find ways to obtain the required
lated from (10), using a computer code that calculates heavy-igfiormation, but another motivation for this section is academic
SEU rates and that accepts Weibull parameters as input. The g@liosity. It is interesting to see the similarities and differences

culated and measured saturation proton cross sections are c8&veen various cases. Furthermore, the results derived in this

pared in Table Il (no distinction is made here between the sakction can be compared to results previously derived by other

uration cross section and the cross sectiolat 200 MeV).  jnvestigators. This comparison is made in the next section.
SEU data in the upper block in the table are from Cabtedl.

[17]. Data from Petersen [18] that are not already in the uppgr i . .
block are in the second block (excluding two devices as dé—' Case 1: A Single but Arbitrary SV

cussed at the end of this section). The Weibull parameters ard he first special case is a single SV having an arbitrary shape.
included in the table so that readers possessing a computer cbide thickness measured in the vertical direction can vary with
as discussed above can easily reproduce the estimates,for the lateral coordinates. This variable thickness accounts for the
SEL data for the last two devices (lower block) in the table we@sadual increase in the normal-incidens (L) versusL curve,
discussed in previous sections. The last column is the calculagsdpreviously pointed out by Langworthy [21]. Usifig= 1

ap- divided by the measured,,.. inside the SV and? = 0 outside, (2) and (3) reduce to
Note that the upper bound is within a factor of three of the
measured cross section for most of the SEU cases listed. The _ 3
) _ . ) opr(E) =nalE, Q.) dz,
SEL entries are consistent with a known trend. Given two de- SV

3
other refers to SEL, the proton cross section is usually (perhaps dL &'z

vices having the sam®,; curve, but one refers to SEU and the /°° 1 dop (L) _a
o L dL Qe Jov
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TABLE I
COMPARISON BETWEEN PREDICTED AND MEASURESPROTON SATURATION CROSSSECTIONS DATA IN THE FIRST BLOCK ARE FROM CALVEL et al.[17], AND DATA
IN THE SECOND BLOCK ARE FROM PETERSON[18]. DEVICES IN THE THIRD BLOCK WERE DISCUSSED INEARLIER SECTIONS

Part Weibull Parameters (Lg and W in MeV- Data Upper Ratio
cmllmg, Cincm?) Bound
Lo C w S Opfsat) | Oplsat)
(cm?) | (em’)
SM1J44100 (SEU) 1.39 2.0E0 15.0 1.21 7.00E-7 | 1.9E-6 2.7
62256R (SEU) 1.60 6.4E-1 20.0 1.65 1.47E-7 | 3.8E-7 2.6
IBM 16MEG (SEU) 1.70 1.3E-1 20.0 3.00 2.12E-8 | 5.8E-8 2.7
MT4C1004C (SEU) 1.54 1.3E0 14.5 1.45 3.94E-7 | 1.0E-6 2.5
KM41C4000Z-8 (SEU) 1.52 1.3E0 18.0 1.45 3.27E-7 | 8.9E-7 27
01G9274 (SEU) 1.60 9.7E-2 28.0 3.25 4.19E9 | 3.1E-8 74
OW 62256 (SEU) 2.40 4.3E-1 16.5 2.25 8.70E-8 | 2.3E-7 2.6
MT4C4001 (SEU) 1.49 1.3E0 15.0 1.21 2.94E-7 | 1.2E-6 4.1
HM6116 (SEU) 4.20 6.6E-2 79 2.50 | 4.59E-8 | 4.7E-8 1.0
62832H (SEU) 3.40 1.0E-1 20.0 1.50 2.89E-8 | 5.0E-8 1.7
2901B (SEU) 4.20 3.0E-3 10.0 1.50 8.5E-10 | 2.1E9 2.5
TC514100Z-10 (SEU) 0.86 2.1E0 18.0 1.15 1.00E-6 | 2.0E-6 2.0
HM 65656 (SEU) 1.50 1.1E-1 12.0 1.75 2.98E-8 { 9.6E-8 3.2
MB814100 10PSZ (SEU) 1.15 3.2E0 15.0 1.35 6.90E-7 | 2.9E-6 4.2
HYB514100J-10 (SEU) 0.86 2.1E0 14.0 1.10 1.46E-6 | 2.5E-6 1.7
LUNA C (SEU) 3.20 1.5E-1 14.0 3.00 | 2.12E-8 | 8.2E-8 39
D424100V-80 (SEU) 0.80 1.5E0 10.0 1.10 1.76E-6 | 2.3E-6 1.3
HM6516 (SEU) 5.00 3.0E-2 14.0 1.90 2.46E-9 | 1.6E-8 6.5
Fairchild 93L422 (bipolar) 0.6 2.6E-5 4.4 0.7 1.4E-10 | 9.6E-11 0.70
(SEU per bit)
Samsung 16M 3.3V DRAM 0.6 9.87E-8 | 1639 1.85 3.5E-14 | 74E-14 2.1
(SEU per bit)
Hitachi 16M 3.3V DRAM 0.5 2.27E-8 79 4.11 1.6E-14 | 2.4E-14 1.5
(SEU per bit)
Micron 16M 3.3V DRAM 0 1.92E-8 8.98 5.37 8.0E-15 | 1.9E-14 2.3
(SEU per bit)
IBM E 16M 3.3V DRAM -0.4 2.6E-9 7.89 5.39 1.7E-15 | 2.8E-15 1.6
(SEU per bit)
K-5 (SEL) NA: See Section V-C 5.6E-9 1.9E-8 34
HM65162 (1985) (SEL) NA: See Section V-A 1.4E-10 | 2.9E-8 210
which gives the collected charge being twice the liberated charge, afd if

00 refers to the critical value of the collected (or amplified) charge
opr(E) = Qenol B, Q) / 1 dowi(L) dL. (12) instead of the critical value of the liberated charge, thes 2
@ o L dL inside the SV. A generalization of (12), which alloWsto be
Note that if it is somehow known that the single SV modedny positive constant (denoté€l) in the SV is
does apply to a device, b@. is unknown, then the supplemen-
tary information (that the single SV model applies) cannot be (E) = 1Q. - <E %> /oo 1 doyi(L) dL.
used to reduce the bound given by (5). Without knowihgthe " a Qo ") Jo L dL
best bound obtainable for (12) is still given by (5). In fact, we
see from (12) that the upper bound given by (5) is not overkill, , , o
because this limit can be reached by any device adequately ge-Case 2: A Collection of RPPs Having a Distribution of
scribed by the single SV model and having a special value fofitical Charges

the critical charge. This special value is the maximizipdgn Previous results apply to a device having a single value of
(4). Using the data in Table I, we calculate this maximizipg Q.. A device containing several components, having different
(which is1/B) to be about 0.1 pC wheh' = 200 MeV. values of(}.., can be treated by simply adding the cross sections

The derivation of (12) assumed a single SV, but summirfigr each component. The original postulate behind the IRPP
cross sections produces the same result for any collection of Skethod for calculating heavy-ion rates [15] is that there is a col-
having identical values fofy... lection of RPP shaped SVs producing a distribution of values

The assumption th& = 1 inside the SV is appropriate whenof 2. The gradual increase in the heavy-ion cross section with
Q. is the critical value of the charge liberated within the S\ncreasing ion LET is attributed to an increasing number of con-
If the SV is subject to some kind of transistor gain amplificatributing RPPs with increasing LET. To describe this case, we
tion, the charge collected at a device contact could differ fronan use (12) for each RPP [the heavy-ion cross section in (12)
the liberated charge. For example, if an amplification results becomes a step function when applied to an RPP, allowing the
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right side to be expressed without an integral], and sum (or in-This result also applies to the collection of RPPs (Case 2) with
tegrate) the individual RPP cross sections to obtain the deviteghe RPP thickness, because there is a mathematical equiva-
cross section. The result need not be listed here because Ieice between that case and the present case. The equivalence
identical to the result derived in Case 4 discussed later. The teyaplies to normal-incident heavy ions [note that unlike the in-
cases produce the same result because of a mathematical eqegral in (5) and (12), the integral in (17) is not rotationally in-

alence pointed out in the discussion of Case 4. variant, so the heavy-ion data must refer to normal incidence].
_ The equivalence is due to the fact that (for normal-incident hits)
C. Case 3: A Partially Separable an (2 that varies with the lateral coordinates combined with a

This case applies whef? can be adequately approximatedonstanty.. (this case) is equivalent to@. that varies with the
by a partially separable function; a functionofilone times a lateral coordinates (from one RPP to the next) combined with a
function of z andy alone ¢ measures depth, andandy are constant (Case 2).

two lateral coordinates). We writ@ as It is interesting that (17) is not equivalent to the result (12)
for a single but general SV (Case 1). A comparison between the
Qz, v, 2) = fz, ¥)g(») (13) two equations shows a fundamental difference between a col-

_ ) _ ] lection of RPPs and a single but general SV (having a variable
for some functiong’ andg. This equation can be written as thickness), even though both cases can produce the sgme
9(2) curve. The same;,; curve can lead to different estimates for
Wz, y, z) = 7(2, )= (14) o, depending on which model is assumed to apply. A device
described by both Case 1 and Case 4 (or Case 2) is character-
where the charge-collection depthand the integral are de- jzed by an SV with uniform depth, so the heavy-ion cross sec-

fined by tion curve is a step function and the two equations, (12) and (17),
oo give the same result. Otherwise, the two equations give different
T(x, y) = / Qz, y, 2)dz = f(z, y)1, results.
> If it is somehow known that Case 2 applies, an estimate for
I E/ 9(2) dz. T might be obtained from a method discussed by Petersen
—o0 [22]. Note however, that while Cases 2 and 4 are indistinguish-

able in terms of heavy-ion hits at normal incidence, they are
distinguishable in terms of the directional dependence of the
heavy-ion cross section for hits at angles. Case 2 is equivalent
to a modified Case 2 in which the samg is assigned to all
RPPs and is uniform within each RPP, bu® is different
for different RPPs. However, the original and modified Case
o0 Q.1 2 regard all RPPs as spatially isolated. To obtain Case 4, we
o <E7 5g(z)> dz. (15)  must move the RPPs in the modified Case 2 next to each other
and add collected charges from all, so that a hit at an angle can
Itis shown in the Appendix that the above equationdgrcan simultaneously intersect several RPPs, with each adding a con-

Substituting (14) into (2) gives

o (E) = / G(E, 1(z, v)) dv dy

whered is defined by

G(E, g)zn/

—o

be written as tribution to the collected charge. The heavy-ion cross section
oo 0.\ dowi(L) will have a different directional dependence for isolated RPPs
opr(E) = / G < , a—i) :;L dL. (16) (Case 2) than for adjacent RPPs (Case 4) that can each contain a
0

section from the same track and contribute to collected charge.
Therefore, while Petersen’s method applies to Case 2, it has
D. Case 4: Lateral Variation within a Uniform Contributing not yet been shown to be valid for Case 4 (incidentally, these

Depth considerations suggest that Petersen may have overlooked

This case, which is a further specialization of the previo®me complications when arguing that the traditional IRPP
case, assumes that charge collection is confined to a horizofgfvy-ion rate calculation applies to a modified version of the
layer having a uniform thickne<g. Q2 is independent of (but RPP model [8]).
it may still depend on the lateral coordinates) within this layer,
and2 =0 abo_ve or below thi; layer. This case is opta_ine_d from VIII. SOME RECENT WORK
Case 3 by letting in (13) satisfy//g(z) = T whenz is inside
the horizontal layer, ang(z) = 0 whenz is outside. For this A number of results relating proton cross sections to

case, (15) reduces to heavy-ion cross sections have been presented in the recent
literature. One motivation for discussing some of these results
G(E, £) = na <E, QCT> T here is to acknowledge some of the recent work previously
3 done by others. In particular, the result for Case 2 (Section

VII) was previously derived by Normand, as discussed below.
Another motivation for discussing these results is that it is
interesting to see the similarities and differences between
various theories. These similarities and differences become

and (16) becomes

dO}”j (L)
— o dL. (A7)

ope(E) = T/OC><> no(E, oLT)
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clear after recognizing that various results are special caggg) is replaced by an experimentally measured function (de-
of (and easily reproduced from) the more general theory stribing the spectra of charge liberated in surface barrier detec-
the present paper. In particular, it will be seen that a resuitrs via proton reactions) which is not subject to errors associ-
by Normand and a result by Johnstenalwere derived from ated with the second physical postulate in Section Il. Their
physically different but mathematically equivalent assumptions refined by including an implicit dependence bnUnfortu-
(Case 2 versus Case 4 in Section VII), except that Johnstuately, this replacement fare appears to be justified only for

used an approximation fotc. the conditions assumed under Case 2. Perhaps their work will
inspire future work that will improve upon the second physical
A. Normand's Result postulate while still retaining most of the generality allowed by

An equation resembling (17) was previously derived by Nothe first physical postulate.
mand equation [(6) in[10]) from the physical assumptions under
Case 2 in Section VII [23]. Apart from notation, the equation§- Johnston’s Result
differ in that Normand’s equation contains an additional param- An analysis by Johnstoet al. [27] recognized that the col-
eterC, which was firstintroduced in an earlier paper [24]. Comiected charge relevant to heavy-ion induced SEL is a function of
parisons between model predictions and measured proton cripgslateral coordinates of the ion-hit location. This is consistent
sections indicated tha&t' = 0.5 is appropriate for some caseswith Case 4, and an equation used by Johnston for calculating
while C = 1 is appropriate for some other cases [10]. This p@roton SEL cross sections can be reproduced by applying an
rameterC' is supported by physical arguments, and these argapproximation to (17). This approximation, which was used by
ments can be used to modify (17) as shown below. Johnston, replaces a distributed spectrum of proton-induced re-
The derivation of (17) started with os&function applicable action products with one predominant or representative type of
to all ionization sources, but a differefitfor different sources reaction, in which the deposited energy is about 10 MeV (the
may actually be appropriate, depending on whether the ioniz@erated charge is about 0.46 pC, which is the number used by
tion produces high-density conditions (the carrier density lidohnston). The entire (i.e., includes all high-energy interactions)
erated by the ionization greatly exceeds the doping density)@bton cross section is associated with this reactionsis ap-
low-density conditions. For the high-density case, a low-ordgroximated by a step function given by
approximation for collected current at a reversed-biased deple-
tion region boundary (DRB) is twice the minority carrier diffu- na(Q) =2.5x 107/um  if Q < 0.46 pC,
sion current, with the carrier-density gradient (used to calculate na(Q) =0 if Q > 0.46 pC.
the diffusion current) calculated from the ambipolar diffusion
equation [4], [5]. However, for low-density conditions at thespstituting this step function fera into (17) gives
DRB, the currentis the minority carrier diffusion current instead
of twice this current. Assuming that the high-density case ap- T 44 pm MeV cn??
plies to heavy ions, while proton reaction products create condi-  °rm = 35 105 1m Thi < T mg ) ’
tions ranging anywhere between low-density and high-density,
the 2 appropriate for proton reactions is somewhere betwedvhennc is a distributed spectrum, the heavy-ion cross section
0.5 and 1 times thé& appropriate for heavy ions. i refers over arange of LET values contributesstg.. The fact thatr,;
to heavy ions, then (2) should be modified by repladingiith  is evaluated at only a single point in (18) is an artifact of the
CQ, whereC' is some number between 0.5 and 1. Repeating thep-function fit used fon«. The selected step function might
derivation of (17) while using the modified form of (2) gives be the best of the step-function fits for the intended application,
- because Johnstat al.[27] found good agreement between the
opn(E) = T/ ne <E, aLZ) doni(L) dL. measured and predicteg,. for anumber of cases representing a
0 c dL wide range of technologies. However, it is not yet clear whether

(18)

As long asT is regarded as a fitting parameter, and not givetll?IS approach has limitations.

a literal interpretation, the equation is just as convenient Whgp': (\j/lzltlljr;g%rsThl?\(/:vr;asr?;lirrzsttéck?ét?heelrgv?rllz(;\lselrnttrr\]iilfriigt:%?
expressed in terms of another fitting paraméftér= 7'/C. In h toxial d o but the bulk devi pi-iaye thouaht
terms of ", the equation becomes e epitaxial devices, but the bulk devices require more thought.

Computer simulations have shown that Case 4 does not apply to
dopi(L) dL the bulk devices (of the cases considered in Section VII, Case 3
T dJdL is the only possible candidate). Therefo¥édoes not have a

literal interpretation as assumed in Case 4, and some effective
which conforms to Normand's result. value is needed. From the point of view of Cas&'4s a constant

and is not necessarily the same as the charge-collection depth
B. Barak's Result (which is a function of the lateral coordinates). The value that
A result presented by Baradt al. ([25, eq. (6)], also in [26]) Johnston assigned 6 was the charge-collection depth calcu-

has the same form as (17). The two equations can be givelated by computer simulations at the lateral center of a cylindri-
more similar appearance by changing variables floto  in  cally symmetric device (the charge-collection depth is expected
(17), usinge = LT, and then integrating (17) by parts. Howto be maximum at the lateral center). Johnstoal. provided a
ever, a distinguishing characteristic of their work is thatin  recipe instead of an equation, but the numerical entries in [27,

opr(E) = CT'/O na(E, alT)
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Table I1]) can be reproduced by using (18) wiftobtained from LET L’ of the RPP. The heavy-ion SEU ratg can be calcu-
[27, Fig. 5]). lated from

00 -1 27

D. O'Neill's Results - / / / h(L, 8, $)o(L, 8, §) d d{cos 6) dL

O’Neill et al. provided two approaches for relating proton to 0 —Lee
heavy-ion cross sections. The first starts with a sophisticatetiereh is the differential (in LET) directional flux. Substituting
technique [28] which calculates a spectrum of proton-induc€d9) into the above equation gives
liberated charge, which is a replacementidar( @) in (17) that o0 9
is not subject to errors associated with the second physical pos- T = / HeH(L’)@ on (L) dL (20)
tulate in Section Il. Charge collection is assumed to be as de- 0
scribed by the SV model, where the SV is an RPP. An effectivéhere H. 4 is the integral effective flux defined by
LET associated with a proton reaction is calculated by dividing o 1 o
the liberated charge by the RPP thickness. Effective LET and Hon(L') = / / / WL, 6, K(L', L, 0, 6)
liberated charge are equivalent descriptions, because one is pro- o J-1Jo
portional to the other. The proton-induced spectrum, plotted as -d¢d(cos 0)dL. (21)
a function of effective LET, is compared to a heavy-ion spec-
trum representing a space environment and plotted as a ful€om the interpretation ok” as a normalized directional cross
tion of ion LET. The end result of this work is an upper boungection for an RPP, it is seen from (21) ti#&tz is the normal-
for heavy-ion induced SEU rates derived from measured prot@gd SEU rate for the RPP. This makes effective flux associ-
cross sections. ated with Case 2 very easy to calculate via a standard computer

The applicability of this analysis may have some limitationgode that calculates heavy-ion SEU rates for RPPs. We calculate
(for reasons given below), but it might be possible to broaden tHe SEU rate for the RPP, divide by the area of the face seen at
applicability by modifying the arguments. The proton-induceiormal incidence, and plot this normalized rate as a function of
spectrum is plotted against effective LET while the heavy-idhe threshold LET assigned to the RPP. The calculated effective
spectrum is plotted against ion LET instead of effective LEflux will be independent of the thickness assigned to the RPP, as
However, for hits at angles, there is also an effective LET fé¢ng as corresponding values are assigned to the critical charge
heavy-ions (also defined in terms of liberated charge dividét® be consistent with the selected threshold LET) and to the
by RPP thickness). A suggested modification to the authotgteral dimensions (to be consistent with the selected dimension
arguments includes the effects of angles as discussed below:atios).

The basic idea is to compare the proton-induced spectrunfollowing O'Neill et al.[28], we now assume Case 2 condi-
to aneffective fluxdescribing heavy ions. An effective flux istions with all RPPs having the same thickn@sdHowever, the
a characteristic of both the environment and an assumed #(?) in (17) is taken to be the spectrum calculated by the au-
rectional dependence describing device susceptibility to hedirs so that errors associated with the second physical postulate
ions. An effective flux for a given heavy-ion environment igre removed. We next look for a constahsatisfying
different for devices having a nearly isotropic heavy-ion cross
section (the RPPs are cubes) than for devices described by the ATna(alT) 2 Hen(L) forall L (22)

cosine law (the RPP thickness is much smaller than the Iatelrﬁ! exists. If such and can be found, we can use (22) with (17)

dimensions). Effective flux can be rigorously defined for any (20) to obtain an upper bound on the heavy-ion rate given
model (RPP or other) in which there is a functiinsatisfying by

oo /
o, 0.9 = [ k@0 9?2 ar a9 s S Ao 23)
’ The result (23) is an extension of the authors’ earlier work

whereo(L, 6, ¢)isthe directional heavy-ion cross section evathat accounts for directional effects when Arsatisfying (22)
uated at ion LETL and in the direction described by the spherexists. If such aml does not exist, we use an approach that is
ical-coordinate angle®s(measured from the device normal) andnalogous to an approach used by the authors. This approach
¢, ando is the normal-incident heavy-ion cross section. Thexpresses the effective flux as a sum of two components con-
on here is the same as,; in (17), but the symbolism was structed so that there is ahassociated with the flux component
changed to distinguish normal incidence from other direction®presenting the majority of the heavy ions. A cruder but more
The functionk has a simple interpretation for devices describegenerally applicable (not requiring at) bound can be used for
by Case 2 and with geometrically similar RPPs (i.e., each ratite smaller flux component because the accuracy requirement
of dimensions for one RPP equals the corresponding ratio forialimore lenient for the smaller component.
other RPPs). For this cas&(L’, L, 8, ¢) can be shown to be One limitation still remains. This limitation is that the RPP
the normalized (by dividing by the area of the RPP face seenmabdel is required to be an adequate approximation, and the RPP
normal incidence) directional cross section for an RPP havidgnensions must be known. This is becad&g andna (the
normal-incident threshold LET'. K(L’, L, 6, ¢) does notde- type of nce most suitable for this analysis) both depend on the
pend on the size of the RPP, but it does implicitly depend on tRPP dimensionsH. is strongly dependent on the dimension
RPP dimension ratios, and explicitly depends on the thresho#tios, even ifr« is not). This makes the values allowed fdr
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dependent on RPP dimensions. A second approach by the sdimebtain the desired result, we use #tehocassumption
authors [29] does not have this limitation.

The second approach also compares a proton-induced spec- To.25 = 3.38 M. (27)
trum to a heavy-ion spectrum, but all spectra now refer to par-
ticle LET instead of effective LET, so comparisons are betwe‘ﬂ%ing (27) and Table | with (26) gives
the same types of spectra. If the two spectra are found to be pro-
portional (for example), they should produce single event rates . 1 don(L)
that are in the same proportion regardless of what model (RPR . = 6.76 x 1076 Lg o3¢ ~*-#4L0.25 / I ZLZZL dL.
or other) applies; except for range effects. lon range is impor- 0 (28)
tant because charge collection depths can be quite large (SO(Wfan, theoy,; curve is defined by a Weibull fit [as opposed to

times 20[,Lm for SEL [27]), and the Contributing depth is |argeraltematives such as (7)], a fa|r|y good approximation is
than the charge-collection depth, so ion range must sometimes

be very large in order for initial LET to be an adequate charac- /oo 1 dopi(L)
0

Ohi, 0
N —, 2
L dL Loos (29)

terization. The authors take range effects into consideration by
distinguishing between different reaction products on the basis
of range. One paper [29] distinguished reaction products haviR
ranges less than/am from the others. This is inadequate for the
larger contributing depths, but more recent work extends the ap- 4

plicability to larger depths [30]. The theory in the present paper,e¢ ~ & A;Q (within a factor of1.4 when0.8 < X < 4.0).
which is most suitable for upper bound estimates of the proton (30)
cross section due to a conservative property of the second physe relevant values ok in (30) depend orLg..5. For many

ical postulate, does not apply to this more recent work, so tiigot all) devices in Table II, the relevast results in (30) being

fother approximation is

work is not discussed further here. accurate to within a factor of 1.4 (either too small or too large).
_ Applying the approximations (29) and (30) to (28) produces the
E. The Petersen—Barak Equation Petersen—Barak equation (24).
Baraket al. [11] pointed out that empirical fits provided by Because approximations were used to derive (24) from (28),
Petersen [18] can be combined to give we might expect (24) to be less accurate than (28). It turns out
 omio that (24) has a better track record than (28). The device data
Opr = 2.22 X 1077 —2=—— (24) in Table Il (excluding the SEL cases) were used to construct
0.25) Table IlI. The ratio columns give,,. calculated from the indi-
where cated equation divided by the measusggl. Note that the ratio
oni,o  heavy-ion saturation cross section; from (24) is usually closer to 1 than the ratio from (28). Other
Tpr (throughout this section) is the saturation cross se¥alues forro.»; were tried with (28), but did not improve the
tion for protons; track record for (28) when a common value fgr; is assigned
Loos# numerical part (when the units are MeV-&mg) to all devices.
of Lo 25 defined byoy,; (Lo 25) = 0.25 X 0 0. A suggested explanation as to why (24) fits the data better
When Weibull parameters are givehg 25 can be calculated than (28) is that (28) assigns the sarge; to all devices. Per-
from haps some other parameter is better thagy in the sense of
being approximately the same for many devices. We could con-
Loos = Lo+ (0.288)1/5 x W. sider a common value fd&p.., instead ofr o5, for all devices. A

commong. produces estimates that are a common multiple of

_ This paper calls (24) the Petersen—Barak equation. This €qyfs nper bounds in Table II. Selectifly to make the estimates
tion can be reproduced (approximately) by assuming that Casg, 5| to one-half the upper bounds will produce a moderately

1 applies and using (6) to write (12) as good track record, but still not as good as (24).
Q. i > 1 dop(L) Assigning a commony »; to all devices does not (at least
Tpr = 7~ Aem B / T dL dL (25) not when Case 1 is assumed) fit the statistical trend as well as
0

(24), and assigning a commap. to all devices does not fit the
where theF dependence was omitted from the notation becausttistical trend as well as (24). That (24) performs better than
200 MeV is assumed. Let o5 be the charge-collection depththe above alternatives is not an accident, because (24) originated
at the perimeter of the region represented by the cross sectimm empirical fits to extensive data sets. The property of being
oni(Lo.25). The critical LET for ion hits at this perimeter isan empirical fit gives (24) an advantage and a disadvantage com-
Lg.25, SO pared to a physics-based model. The disadvantage is that infor-

mation sufficient to completely determing,. cannot be utilized

Qe = a70.25L0.25 by (24), even if such information were available. The advantage
is that, when such information is not available (usually the case
in practice), (24) has a high probability of producing an estimate
that is nearly as good or better than a physics-based model con-
tainingad hocvalues for the unknown parameters.

and (25) becomes

1 doni(L
opr = T0.25L0.05 Ac™@BT023L0 23 / L dowilL) ,y (26)

o L dL
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TABLE 11l latter cases are inappropriate, but the more versatile Case 3 is an

THE RATIO COLUMNS GIVE 7, CALCULATED FROM THE INDICATED adequate approximation, an estimate is needed for the function
EQUATION (USING DATA IN Table 1) DIVIDED BY THE MEASUREDG ... NOTE

THAT THE PETERSEN-BARAK EQUATION (24) PERFORMSBETTER (THE RaTio  9(%). Future work might find inexpensive methods for obtaining
IS CLOSER TO1) THAN (28) FOR THEMOST OF THECASESLISTED the required information, but another reason for presenting these

results is academic curiosity. It is interesting to see the similari-

Part Ra‘ég:;"m Rat;ggf;"m ties and differences between various models, including models
SMJ44100 1.39 1.60 previously presented by others.
62256R 0.796 0.578 An empirical fit applicable to SEU (not SEL), which this
IBM 16MEG 0.613 0.213 paper calls the Petersen—Barak equation, was also discussed.
Kﬁz‘l‘gjgggg 3 }‘(2)‘; 01‘93619 . This is not only one of the simplest results, but also has a high
01G9274 120 0.106 probability of producing an estimate for the saturation proton
OW 62256 0.776 0.469 cross section that is nearly as good or better than a physics-based
MT4C4001 2.09 2.40 model containing ad hoc values for unknown parameters. If the
HM6116 0.394 0.375 information that is needed to take full advantage of a physics-
62832H 0.522 0.293 li labl v th if the obi
2901B 107 0.999 b_asgd mode is not avai able (usua y the case), and if the objec-
TC514100Z-10 0.963 1.16 tive is to obtain a “most probable estimate,” as opposed to an
HM 65656 1.50 1.72 upper bound, this equation should be considered.
MB814100 10PSZ 2.03 2.36
HYB514100J-10 1.10 1.35 A
LUNA C 1.01 0.599 PPENDIX
D424100V-80 1.17 1.22 DERIVATION OF EQUATIONS (3) AND (16)
HM6516 1.80 1.01 . , .
Fairchild 93L422 (bipolar) 296 0542 Let the coordinate system be oriented so thattexis is
Samsung 16M 3.3V DRAM 0.779 0.789 parallel to the heavy-ion trajectory. The device orientation rela-
Hitachi 16M 3.3V DRAM 0.785 0.976 tive to this coordinate system is arbitrary. For a normal-incident
Micron 16M 3.3V DRAM L05 1.30 orientation oy, is the normal-incident heavy-ion cross section.
IBM E 16M 3.3V DRAM 0971 1.17

Otherwises;,; is a directional cross section. The location of an
ion trajectory is given by two coordinatesandy. Let Q(z, v)

IX. CONCLUSIONS be t_he coIIe_cted charge prpduced by an ion With Ll_E'Emd_
having a trajectory at, . Using the selected device orientation

A common situation is that in which a device has been testggl yefine the charge-collection efficiency functi®z, ¥, z),
with heavy ions for SEU and/or SEL, but not yet tested Wit have
protons. A proton test is an additional expense, so there is a o
motivation to use heavy-ion data to predict proton cross sec- Qlz,y) = aL/ Qx, y, 2) dz. (A1)
tions. Of the results derived here, the upper bound estimate is -~

the_most useful in terms of practical applications, because it\}_§e are callingQ the collected charge for conceptual clarity,
derived from the most generic assumptions and does not requjfig ough it could be some other quantity. If so, then (A1) is taken
information that is not available. A disadvantage is that this &g pe the definition ofQ, with © defined in the first physical

timate is sometimes excessively conservative (pessimistic). Tﬁ’t?stulate. The first physical postulate implies that( L) is the
method was used to estimate SEU rates in a proton envirgag of the set of points:( ) in the plane satisfying

ment for numerous devices of interest to a JPL flight project.
An additional (but not excessive) conservatism was included by Qz, y) > Q..

assigning the 200 MeV cross section to all protons having ener-

gies greater than 7 MeV. The observation from this applicatidilis set of points is the same as the set satisfying

is that the rate estimates are often acceptable to a flight project, Q

even though the estimates might be excessively conservative, in m(z, y) > a—]j

which case a proton test is not needed. If the estimate predicts ] .

problems for a flight project, a proton test is needed to obtaf¥€re  is the normalized collected charge (also called the
a smaller estimate, but the upper bound does at least reducedt@ige-collection depth) defined by

number of tests that are required. Qlz, v) /oo

Practical applications of the results intended to accurately es- Tz, y) = —— Uz, y, z)dz.  (A2)

al

ade o)

timate the proton cross section (instead of a bound for it) are

more limited, because additional information is required. It mu$therefore
first be known which model (e.g., one of the cases in Section o)

VIl) is the best choice, and then model parameters must be es- oni(L) =F <—Lc> (A3)
timated. If it is (somehow) known that Case 1 is an adequate “

approximation, an estimate is needed for the critical chargewhere " is defined by

it is (somehow) known that either Case 2 or Case 4 is an ade- .

guate approximation, an estimate is needed for the RPP thick- F(v) =area of the set of points;, y)

ness or the contributing depth. If it is (somehow) known that the satisfyingr(z, y) >wv,
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i.e., F'(v) is the cross section for the normalized charge to eXaking the limit asAv — 0 gives

ceedv.

A mathematical theorem can be derived after defining some

additional symbolism. Letbe any set of points in the, y plane
having a defined area. The areasofs denotedA[s], and the
compliment ofs (all points in the plane not ir) is denoteds*.

For anyv > 0, define

S(v) = the set of point§z, y) satisfyingr(z, ) > v.

Now select a positive numbekv and letv,, = nAv(n =
0,1, 2, --+). Define each of the sef$;, Sz, ---, by
S, =the set of pointgx, y) satisfying
Uy > 7(x, Y) > Up1 (n=1,2,---).

/ G(r(zx, y)) dx dy
sNSW)

= G(0)A[s N 5*(0)] — /0 7 e S dv

for any point sets and any function7 such that the integrals
exist. In particular, ifG(0) = 0, we can lets be the entirer, y
plane to get

dF(v)
dv

/ G(r(z, y)dedy = —/ G(v) dv ifG0)=0
0

where the integral on the left integrates over the entirey

plane, and we used[s N S(v)] = A[S(v)] = F(v). The above

equation can be expressed in termssf by using (A3) and

Some of the above sets may be empty but this does not invalidat,gngmg variables in the integral on the right to get

the theory. The:, y plane is the union o (0) with S*(0), while

S(0) is the union of the set§;, Sz, - - -. Therefore an arbitrary

sets can be expressed as
s=[sNS*(O)]U[U{sNS,}]

The right side is a union of nonintersecting sets, so

/. G(r(z, v)) dz dy

oo

/5 o G(7(z, y)) dx dy + ; / . G(r(z, y)) dz dy

for any functionG such that the integral on the left side exists,

Using the definition ofS,, and the fact that = 0 on S*(0)
gives

/ G(r(x, y)) dz dy

G(0)A[s N S*(0)] + i G(un)A[sNS,] (A4)

which is valid to first order im\v (we will later take the limit as
Awv — 0). The definitions of the sets imply that

S(vn-1) = S(vn) U Sy
o)
sNS(vp_1) =[sNSw,)|U[sN S,
The right side is a union of nonintersecting sets, so
Als N S(vp_1)] = Als N S(v)] + A[s N Sy).

This equation allows us to write (A4) as

/ G (e, ) da dy

5
oo

G(O)A[sN S™(0)] = > G(uv,)

CA[s N S(wn)] — Als ﬂ:S(vn — Av)]
Av

Av,

dO’]”‘(L)

dL
dL

/ G(r(x, y)) dedy = /OOO ¢ <aQ_L>

if G(0) =0. (A5)
This equation is used to derive (16) in the main text. To derive
(3), we apply (A5) to the special case given®y¢) = £. The
integral on the left becomes the integrabi@fe, ) on thez, y
plane, which, according to (A2), is the volume integral{tf
The result is

Qe

a

dL. (A6)

/ Q(‘Tv Y, Z) dx dy dz = / l do—hi(L)
0

L dL
Note that a change in the device orientation will rotate the func-
tion €2, but this does not change the volume integral on the left
side of (A6). This implies that the right side has the same value
whethersy,; is the normal-incident cross section or the direc-
tional cross section for some other direction.
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